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Multi-Omics-Based Autophagy-Related Untypical Subtypes
in Patients with Cerebral Amyloid Pathology

Jong-Chan Park, Natalia Barahona-Torres, So-Young Jang, Kin Y. Mok, Haeng Jun Kim,
Sun-Ho Han, Kwang-Hyun Cho, Xiaopu Zhou, Amy K. Y. Fu, Nancy Y. Ip, Jieun Seo,
Murim Choi, Hyobin Jeong, Daehee Hwang, Dong Young Lee, Min Soo Byun, Dahyun Yi,
Jong Won Han, Inhee Mook-Jung,* and John Hardy*

Recent multi-omics analyses paved the way for a comprehensive
understanding of pathological processes. However, only few studies have
explored Alzheimer’s disease (AD) despite the possibility of biological
subtypes within these patients. For this study, unsupervised classification of
four datasets (genetics, miRNA transcriptomics, proteomics, and blood-based
biomarkers) using Multi-Omics Factor Analysis+ (MOFA+), along with
systems-biological approaches following various downstream analyses are
performed. New subgroups within 170 patients with cerebral amyloid
pathology (A𝜷+) are revealed and the features of them are identified based on
the top-rated targets constructing multi-omics factors of both whole
(M-TPAD) and immune-focused models (M-IPAD). The authors explored the
characteristics of subtypes and possible key-drivers for AD pathogenesis.
Further in-depth studies showed that these subtypes are associated with
longitudinal brain changes and autophagy pathways are main contributors.
The significance of autophagy or clustering tendency is validated in peripheral
blood mononuclear cells (PBMCs; n = 120 including 30 A𝜷- and 90 A𝜷+),
induced pluripotent stem cell-derived human brain organoids/microglia (n =
12 including 5 A𝜷-, 5 A𝜷+, and CRISPR-Cas9 apolipoprotein isogenic lines),
and human brain transcriptome (n = 78). Collectively, this study provides a
strategy for precision medicine therapy and drug development for AD using
integrative multi-omics analysis and network modelling.
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1. Introduction

Alzheimer’s disease (AD) is one of the
most common forms of neurodegenerative
disorder characterized by progressive ac-
cumulation of cerebral beta-amyloid (A𝛽)
plaques.[1] Although the accumulation of
A𝛽 plays a role in accelerating the pro-
gression of AD,[2] AD is a multi-factorial
disorder for which genetic risk, immu-
nity, and lipid metabolism are important
contributors.[3] In particular, the immune
system is now considered one of the ma-
jor factors in AD,[3e] as AD pathology is ac-
companied by chronic inflammation with
changes in innate immune cell popula-
tions in the brain, such as microglia, as-
trocytes, myeloid cells, dendritic cells, and
other lymphocytic cells.[4] Furthermore, a
large number of known AD risk genes are
related to immune responses including the
complementary system or microglial func-
tion, which play a central role in amy-
loid pathways and neuronal death.[3b,5] Sev-
eral reports also demonstrated that periph-
eral inflammation contributes to patholog-
ical changes in AD due to the bidirectional
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transport of peripheral immune cells or cytokines and perme-
ability of the blood-brain-barrier.[4b,6] However, finding optimal
drug-targets is rather difficult given the complexity of AD pro-
gression caused by the diverse risk factors, despite the apparent
impact of immunological factors. Several studies have suggested
that the heterogeneity of AD exists, but very few have explored
AD subtypes within affected patients.[7] Hence, some integrated
analytic approach overseeing diverse pathways is required to un-
derstand the intricate mechanisms of AD and unravel clues to the
heterogeneity of its pathogenesis. However, a few studies have
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performed omics-based subtyping trials; for example, Neff et al.[8]

only used RNA sequencing data from two different public cohorts
(Religious Orders Study/Memory and Aging Project (ROSMAP)
and Mount Sinai Brain Bank (MSBB)).

Recent technological advances have led to the new era in data
analyses with large volumes of data from different multi-omics
layers.[9] For instance, unsupervised integration of multi-omics
datasets has identified subtypes of many heterogeneous cancers,
such as pancreatic ductal adenocarcinoma, renal cell carcinoma,
and stomach adenocarcinoma.[9a,9c,10] However, methods for the
integration of heterogeneous datasets or various data-types are
still lacking. Interestingly, the latest method called multi-omics
factor analysis+ (MOFA+), a computational method for unsuper-
vised integration decomposing the sources of data heterogene-
ity, was developed by a group in the European Molecular Biology
Laboratory (Heidelberg, Germany) to address this problem.[11]

They demonstrated that MOFA+ is able to identify major sources
of variation in heterogeneous disease and reveal novel puta-
tive molecular drivers of each possible subtype. Furthermore, it
enables the reconstruction of multi-omics factors (MOFs) and
merges different patterns of missing data. Since it is hard to col-
lect all information without missing values and match all data-
types for multi-omics layers, MOFA+ is a great tool for a wide
range of multi-omics studies.

In this study, MOFA+ was applied to our multiple datasets
(targeted-sequencing, miRNA transcriptome, proteomics, and
other blood-based biomarkers) from blood samples of pa-
tients with cerebral amyloid pathology. Through this unsuper-
vised data integration, we aimed to find unknown subtypes of
AD within patients. Moreover, using a systems-biological ap-
proach, we explored the characteristics of subtypes and possi-
ble key-drivers. Peripheral blood mononuclear cells (PBMCs)
and induced pluripotent stem cell (iPSC)-derived human brain
organoids were used for further validation. Taken together, we
herein suggest a multi-omics-based analytic platform for AD pre-
cision medicine approaches.

2. Results

2.1. Demographics of the Participants

The demographic data of participants with cerebral amyloid
pathology (Pittsburgh compound B-positron emission tomogra-
phy scan positive cases; PiB+) or validation cohorts are described
in Tables S1–S4, Supporting Information. For the multi-omics
study, the population comprised cognitively normal participants
(CN+, n = 40), and patients with mild cognitive impairment
(MCI+, n = 65) and AD dementia (DEM+, n = 65). Since the
aim was to discover new subtypes within patients with A𝛽 in the
brain, PiB negative cases (PiB−) were not included in the multi-
omics model. For the statistical validation of MOFA+ tool, a Chi-
nese cohort (n = 106 patients with AD; n = 74 CN) was used
(see Table S2, Supporting Information). For the validation of key-
drivers from multi-omics analysis, two additional cohorts, includ-
ing PiB− cases (cohort for peripheral validation: n = 30 PiB−, n =
90 PiB+, total n = 120; cohort for central validation: n = 5 PiB−,
n = 5 PiB+, total n = 10), and public NCBI GEO database (total n
= 78; n = 32 CN, n = 46 AD; GSE109887) were used (see Tables
S3–S4, Supporting Information).
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Figure 1. Graphical summary of the study concept. A wide variety of experimental and analytic tools were utilized prior to the machine learning pro-
cesses, using human blood-derived biopsied specimen (PBMC, DNA, plasma, serum, miRNA) from 170 patients with cerebral amyloid pathology. The
unsupervised machine learning (MOFA+) and clustering analyses were performed followed by four multimodal generations. After clustering analyses,
each of the clusters (untypical subtypes within the patients) was characterized using the systems biological approaches. Potential key-drivers contribut-
ing to the clusters (the overlapped drivers with the MCA & KDA based on HENA AD network structure) were selected and analyzed using the longitudinal
brain-imaging datasets including PiB-PET, FDG-PET, and MRI scans. After characterization of the key-drivers, final targets were further validated using
human PBMC samples, iPSC-derived brain organoids, CRISPR-Cas9 base edited iPSC-derived organoid or microglia, and human post-mortem brains
(validations 1 and 2).

2.2. The Overall Design of the Study

A graphical concept of this study is presented in Figure 1
and the overall step-by-step approaches for multi-omics analy-
sis are shown in Figure S1, Supporting Information. For the
multi-omics analysis, various experiments and analyses were per-
formed using human blood-derived biopsied specimens (plasma,
serum, miRNA, DNA, and PBMCs) (Figure 1; upper section).
Four datasets (genetics, targeted sequencing data; miRNA tran-
scriptomics, Nanostring nCounter miRNA analysis; proteomics,
six-plex TMT-based blood proteomics; blood-based biomarkers,

immunoassays, or colorimetric assays) were generated and ap-
plied as multi-omics layers (see Figure S1a, Supporting Infor-
mation). Two different models were generated by MOFA+ to
identify data subtypes. First, a multi-omics model using whole
datasets (multi-omics-based total profiling model for AD; M-
TPAD) was created to represent every possible mechanism of AD.
This M-TPAD model included 1133 single nucleotide variants
(SNVs) within 125 genes, 109 miRNAs, 398 proteins, and 136
blood-based biomarkers. Second, we generated a multi-omics
based-immune profiling model for AD (M-IPAD) that focused
on immune-related targets sorted by the public Immport DB
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database.[12] For the M-IPAD model, 658 SNVs within 76 genes,
109 miRNAs, 183 proteins, and 123 blood-based biomarkers were
used. Further details of the demographic data used in both mod-
els are shown in Tables S5 and S6, Supporting Information.

For both M-TPAD and M-IPAD models, quality-controls and
normalization for each dataset were performed to insert them
into the learning protocol by MOFA+ in R software (see Figure
S2, Supporting Information). The generated MOFs (the factors
capturing the global sources of variability in the data and ordi-
nating cells along a 1D axis centered at zero; the relative posi-
tions of samples are converted as numeric values for the down-
stream analysis)[11a] and automatically imputed datasets were
used for clustering and further downstream analyses (see Fig-
ure S1b, Supporting Information, upper two graphs). Charac-
terization of each subtype was conducted by systems-biological
approaches (see Figure S1b, Supporting Information, lower two
graphs). Top-weighted targets and their association were evalu-
ated by our biological network model through systems-biological
approaches. For validation, the significance of key-drivers from
the multi-omics analysis was validated both in PBMCs (n = 120
including 30 PiB− and 90 PiB+) and iPSC-derived human brain
organoids (n = 10 including 5 PiB− and 5 PiB+). In addition,
CRISPR-Cas9-based gene-edited iPSC lines (Apolipoprotein E
(ApoE) ɛ3/ɛ3 iPSC, parental line; ApoE ɛ4/ɛ4 iPSC, isogenic line)
were also used for the generation of iPSC-derived microglia and
3D brain assembloids (brain organoids with iPSC-derived mi-
croglia). Finally, the clustering tendency was further validated us-
ing a different public NCBI GEO cohort (GSE109887), including
human post-mortem brain transcriptome data (n = 78 including
46 AD and 32 CN) (Figure 1).

2.3. Application of MOFA+ and Subtyping of Patients

After quality-controls and normalization of the datasets (see Fig-
ures S1 and S2, Supporting Information), MOFA+ was used as
follows: i) loading the four datasets, ii) checking the variance ex-
plaining each dataset, iii) comparing the balances between the
MOFs, iv) selecting appropriate combination of two MOFs, v) es-
timating the optimal number of clusters and finding appropriate
subtypes for PiB+ (Figure 2a–g). After all datasets were success-
fully loaded (Figure 2b,e, left), average percentage of explained
variances was confirmed (> 20%) (Figure 2b,e, middle). More-
over, the variances were laid out by each MOFs, respectively (Fig-
ure 2b,e, right). For the steps (iii) to (v) (Figure 2b,e right and
Figure 2c,d,f,g), standardized criteria were used for determining
clusters within the patients with PiB+ (Figure 2h). First, elbow
plots and silhouette curves of each factor-combination were visu-
alized for estimating the optimal number of clusters (Figure 2c,f,
see Figure S3, Supporting Information). Furthermore, the k value
was determined within the range of 2–5. After clustering with
the k-medoids method (see Figure S3, Supporting Information),
each factor-combination underwent assessments by the stan-
dardized criteria to select the best clusters (Figure 2h). Through
the four standards (Figure 2h), the combination between factor 1
and factor 2 was selected as the best option for both M-TPAD and
M-IPAD models (Figure 2h; see Figure S3, Supporting Informa-
tion). All scores of clusters were well-balanced within the range

of ±10% from total average silhouette width (0.40–0.43 for M-
TPAD, 0.58–0.66 for M-IPAD) (see Figure S3c,d, Supporting In-
formation). Especially, clustering of the M-IPAD model showed a
fairly high average silhouette score (> 0.5) (see Figure S3d, Sup-
porting Information).

2.4. Preliminary Evaluation of M-TPAD and M-IPAD Models

Demographic data of the M-TPAD and M-IPAD clusters are
shown in Tables S5 and S6, Supporting Information. First, the
MOFs (factors 1 and 2) of the M-TPAD model were significantly
different between all the clusters (Figure 2i). More, receiver op-
erating characteristic (ROC) curve analysis showed that all com-
parisons of clusters had significant p-values (p < 0.05) and high
area under the curves (AUC) (Figure 2j, see Table S7, Support-
ing Information). Similar to M-TPAD, MOFs (factors 1 and 2) of
the M-IPAD model were dramatically different between all the
clusters (Figure 2k) and ROC curves showed high differences be-
tween all comparisons (Figure 2l, see Table S7, Supporting Infor-
mation). These results suggest that our clusters are well-divided
and seemed to be ready for the downstream analysis. However,
we needed to confirm that the generated clusters did not sim-
ply rely on the well-known AD-related factors. Interestingly, al-
most all these factors (age, sex, apolipoprotein E status, brain A𝛽,
mini-mental state exam scores, hippocampal volume (Hva), cor-
tical thickness, brain glucose metabolism) in the clusters from
M-TPAD and M-IPAD did not show any differences (see Figure
S4, Supporting Information), and were not correlated with the
MOFs (see Figure S5, Supporting Information), except for clus-
ter 3 from the M-IPAD model, which showed significantly higher
accumulation of brain A𝛽 than clusters 1 and 2 (see Figure S4c,
Supporting Information, first graph). Thus, we speculated that
our clusters were generated by hidden, but important, factors
constructing our multi-omics model.

2.5. Key Targets Contributing to the Clustering of the M-TPAD
and M-IPAD Models

We listed the top-rated targets contributing to the clustering of
the M-TPAD and M-IPAD models (Figures 3 and 4). Top 30 (for
SNVs) or top 10 key targets (for other datasets) from the M-TPAD
model are listed and their absolute values loaded on each MOF
are presented in Figure 3a. For comparison between the clusters,
heatmaps representing increased (> 0) or decreased (< 0) rate for
the incidences of each SNV or for the levels of top-rated targets
compared with the average value of the whole cohort are shown
in Figure 3b. In addition, comparisons of the highest weighted
targets are shown in Figure 3c,d.

Similar to the M-TPAD model, all of the same analyses for M-
IPAD model were conducted (Figure 4a,b). As expected, almost
all of the highest weighted targets from the M-IPAD model were
significantly different between the clusters (Figure 4c,d). More-
over, all of the highest weighted targets from both models were
dramatically correlated with MOFs (see Figure S6a,b, Support-
ing Information), and ROC curve analysis using all of the high-
est weighted targets showed significant p-values and high AUCs
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Figure 2. Application of MOFA+ to a study of AD (M-TPAD and M-IPAD model). a) Process for finding new AD subtypes using the MOFA+ and
ggplot2 in R software. The methods for selection of factor-combination and determination of the number of clusters are described in detail in Figure 3.
b,c) Overview of the M-TPAD and M-IPAD models. The types of dataset layers (left), cumulative proportion of total variance explained (middle), and
proportion of variance explained of individual factors (right) are shown. d) Silhouette and elbow plot analysis to determine the number of clusters and
appropriate factor-combination for the M-TPAD model. e) Generated clusters (k = 3) by k-medoids clustering for the M-TPAD model. f) Silhouette
and elbow plot analysis to determine the number of clusters and appropriate factor-combination for the M-IPAD model. g) Generated clusters (k =
3) by k-medoids clustering for the M-IPAD model. h) Application of standardized criteria for determination of the factor-combination and number of
clusters (k value). Both M-TPAD and M-IPAD models showed the best combination between Factor 1 and Factor 2 with the same k value (k = 3). i)
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(see Figure S6c and Table S8, Supporting Information). How-
ever, since MOFA+ is a computational unsupervised integration
that cannot include a biological interpretation, further systems-
biological approaches for M-TPAD and M-IPAD models were still
needed.

2.6. Characterization of Subtypes within AD Patients by
Systems-Biological Approaches

First, we performed STRING analysis (canonical protein-protein
interaction (PPI) analysis) and Integrated Interactions Database
analysis (context-specific PPI analysis),[13] analytic tools for func-
tional protein-protein association networks, to identify molecu-
lar networks of the top-rated targets from MOF (factor 1 or 2)
both in the M-TPAD and M-IPAD models (see Figures S7 and
S8, Supporting Information). Almost all of the top-rated targets
showed significant interactions in each MOF (M-TPAD or M-
IPAD factor 1, 2); particularly, the targets consisting of factor 2 of
M-IPAD showed the highest functional association (number of
nodes, number of edges, and average node degree) and the high-
est number of PPIs (see Figure S7d and Figure S8, Supporting
Information). This suggests that almost all the top-rated targets
consisting of our multi-omics models are clearly linked with each
other.

To investigate the biological role of each cluster, we performed
enriched pathway analysis using our targets that showed a sig-
nificant increase or decrease rate (threshold > 0.5 or < −0.5, re-
spectively) compared with the average value of the whole cohort
to reveal important pathways of each cluster in both M-TPAD
and M-IPAD (Figure 5a,5b). Using publicly available databases
(gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), BioCarta, and Reactome), significantly enriched path-
ways were selected. Interestingly, many immune-related path-
ways (immune systems, complement pathways, lipid metabolic
process, complement activation, among others) were identified
in the M-IPAD model (Figure 5b). Furthermore, clusters 1 and 3
of the M-TPAD model showed dramatically opposite characteris-
tics, despite they both comprised PiB+ participants without any
differences in their cognitive functions, age, sex, ApoE type, or
brain status (Figure 5a, see Figure S4 and S5, Supporting Infor-
mation).

In addition, cluster 2 of the M-IPAD model showed distinctive
characteristics compared with clusters 1 and 3 (Figure 5b). Next,
we performed MCA followed by key driver node analysis (KDA) to
identify the key-drivers among our top-rated targets (Figure 5c).
The HENA network model and MEGENA approach were used to
identify key driver nodes within the network model.[14] The over-
lapped targets between the driver nodes and our top-rated tar-
gets from the multi-omics models were finally selected as drivers
in our models (Figure 5d). With the main pathways from the

enriched pathway analysis (false discovery rate (FDR)-adjusted
p-value < 0.0001), the key drivers were finally chosen as the
main phenotypes of our multi-omics models (Figure 5e). Thus,
final characterization of the subtypes within the AD patients was
completed by the convergence between multi-omics analysis and
systems-biological approaches.

2.7. Association between Longitudinal Changes in the Brain and
Key-Drivers of AD Subtypes

As our clustering had no noticeable relationship with the well-
known AD-related features (cross-sectionally), we speculated that
our clusters were generated by hidden factors that could be char-
acterized by the combination of systems-biological approaches.
However, if significant longitudinal changes in the brain occur
that also could contribute to AD clustering, it would not be possi-
ble to collect such molecular information. Therefore, 108 partic-
ipants among the initial cohort (n = 170) were recruited again to
undergo additional comprehensive evaluations and multi-modal
brain imaging, such as PiB-PET, FDG-PET, and MRI (Figure 6a).
There have been many changes in the condition of participants
for 2 years (cognitive decline was observed in 63.5% of patients,
PiB increase was observed in 77.9% of patients, FDG decrease
was observed in 89.8% of patients, Hva decrease in 73.8% of
patients, and clinical dementia rating changes in 26.8% of pa-
tients) (Figure S9, Supporting Information). Interestingly, com-
parisons of the changes in FDG-PET or Hva MRI (delta values)
data between AD subtypes revealed significant differences be-
tween the clusters both in the M-TPAD and M-IPAD models (Fig-
ure 6b–6d). Next, we further tried to find which key-drivers were
relevant to these pathological changes (decreasing or increasing
trend from cluster 1 to cluster 3) in the brains (Figure 6e), which
were named “key-drivers having similar patterns with delta FDG-
PET or Hva” (sKeys). Surprisingly, most sKeys were mainly in-
volved in autophagy pathways (Figure 6f). Furthermore, the acti-
vation/inhibition tendencies (lines of Figure 6f) according to the
references (Table S9, Supporting Information) corresponded to
our decreasing or increasing trends of sKeys from cluster 1 to
cluster 3.[15]

Noteworthy, FDG-PET (from cluster 1 to cluster 3; increasing
FDG in M-TPAD, decreasing FDG in M-IPAD) and Hva (from
cluster 1 to cluster 3; decreasing Hva in M-TPAD, increasing
Hva in M-IPAD) tended to show the opposite trend in M-TPAD
and M-IPAD, which could be explained by the fact that our
KBASE cohort is mostly distributed in early AD stage (Figure 6g,
yellow-shaded) according to the hypothetical AD progression plot
previously published.[15h] Since there have been several reports
of autophagy-related pathways being highly associated with Hva
changes (especially through BECN1, COX1), glucose metabolism
(through AGE-RAGE pathways), and neurodegeneration, our

Comparison of MOFs between the clusters from the M-TPAD model. P-values were obtained from ANOVA with Tukey’s post-hoc test. #P-values were
from unpaired t-test. j) ROC curve analysis using the values of factor 1 or factor 2 to discriminate between the clusters from the M-TPAD model. See
details in Table S7, Supporting Information. k) Comparison of MOFs between the clusters from the M-IPAD model. P-values were obtained from ANOVA
with Tukey’s post-hoc test. l) ROC curve analysis using factor 1 or factor 2 to discriminate between the clusters from the M-IPAD model. See details in
Table S7, Supporting Information. Abbreviations: ip, M-IPAD; tgwas, targeted sequencing data from genome-wide associated loci study; tot_withinss,
total within-cluster sum of squares; tp, M-TPAD; sil_width, silhouette width; Var, variance explained; AUC, area under curve; Clu, cluster; F1, factor 1;
F2, factor 2.
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Figure 3. Key-targets contributing to the clustering of the M-TPAD model. a) List of top-rated targets (top 30 for SNVs and top 10 for others) on factor 1 or
factor 2. Absolute loading values were used for the list. Asterisks denote superlative targets (absolute loading value > 0.9) of each dataset. b) Heatmaps
for the top-rated targets showing increased (> 0) or decreased (< 0) rate compared with the average value of the whole cohort. For the tgwas dataset,
the rate means increased (> 0) or decreased (< 0) incidence of each SNV compared with the average incidence in the whole cohort. c,d) Comparison
of the highest weighted targets (factor 1 or factor 2) between the clusters from the M-TPAD model. P-values were obtained from ANOVA with Tukey’s
post-hoc test or Chi-square test. #P-values were from unpaired t-test. Abbreviations: Alt, the allele in the alternative genome; Clu, cluster; Ref, the allele
in the reference genome; tgwas, targeted sequencing data of genome-wide associated loci study.

interpretation of the data provide reasonable evidence for the
appropriate MOFA+ clustering.[15a,15b,15h,15k,15n] Thus, beyond
the multi-omics analysis and systems biological approaches,
we further concluded that the subtypes of AD from M-TPAD
and M-IPAD models are even associated with longitudinal
changes in the brains of AD patients, and that autophagy-related
pathways are the main contributors for the clustering.

2.8. Validation of Impact of Autophagy on AD

Because autophagy-related pathways were major key-drivers in
our multi-omics models, we needed to confirm that our PiB+ pa-
tients from KBASE cohort were impacted by autophagy-pathways
both in the periphery and the brain compared to PiB− patients.
Moreover, dysregulation of autophagy is one of the contributors
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Figure 4. Key targets contributing to the clustering of the M-IPAD model. a) List of top-rated targets (top 30 for SNVs and top 10 for others) on factor
1 or factor 2. Absolute loading values were used for the list. * denotes superlative targets (absolute loading value > 0.9) of each dataset. b) Heatmaps
for the top-rated targets showing increased (> 0) or decreased (< 0) rate compared with the average value of the whole cohort. For the tgwas dataset,
the rate means increased (> 0) or decreased (< 0) incidence of each SNV compared with the average incidence of the whole cohort. c,d) Comparison
of the highest weighted targets (factor 1 or factor 2) between the clusters from the M-IPAD model. P-values were obtained from ANOVA with Tukey’s
post-hoc test or Chi-square test. #P-values were from unpaired t-test. Abbreviations: Alt, the allele in the alternative genome; Clu, cluster; Ref, the allele
in the reference genome; tgwas, targeted sequencing data of genome-wide associated loci study.

to AD pathology; little is known about the links between periph-
eral autophagy and AD or the direct association of longitudinal
brain changes with autophagy-related molecules in the brain.
For the validation of autophagic dysfunction in AD, certain addi-
tional cohorts with PiB− cases (cognitively normal without cere-
bral amyloid pathology; CN−) were included (PBMC samples,
n = 120 including 30 PiB− and 90 PiB+; iPSC-derived human
brain organoids, n = 10 including 5 PiB− and 5 PiB+), and PiB−

and PiB+ were comparatively analyzed (Figure 7a, validation I-
i; related to Figure 7b,c). Moreover, we further tested the impact
of most popular AD risk gene (ApoE genotypes) on autophagy
pathways through our 3D iPSC-derived brain organoids or iPSC-
derived assembloid system (mixed culture model; organoid+mi-
croglia) using CRISPR-Cas9-based sporadic AD modeling iPSC
lines (ApoE ɛ3/ɛ3 iPSC, parental line; ApoE ɛ4/ɛ4 iPSC, isogenic
line) (Figure 7a, validation I-ii; related to Figure 7d–7f).
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Figure 5. Final characterization of subtypes within AD patients by convergence between multi-omics analysis and systems-biological approaches. a,b)
Enriched pathway analysis using the whole dataset to reveal key pathways of each cluster in the M-TPAD and M-IPAD models. The normalized activities
(threshold > 0.5 or <−0.5) of each target were used as input. The pathways were selected from GO, KEGG, BioCarta, and Reactome databases. P-values,
FDR-adjusted p < 0.05. c) Identification of key driver nodes by KDA following MCA. d) Final steps for characterization of subtypes within AD patients. The
overlapped top-rated targets with the key driver nodes from KDA were finally selected as key molecules. Moreover, key pathways were singled out again
by the cut-off with FDR-adjusted p-value < 0.0001. Exceptionally, the term “Immune system” from Reactome database (R-HSA-168256) was included
in the final phenotypes because it had the highest enriched pathway score although the FDR-adjusted p-value was between 0.0001 and 0.05. e) Final
characterization of the subtypes within AD patients by convergence between multi-omics analysis and systems-biological approaches. Abbreviations:
Clu, cluster; DB, database; GO, gene ontology; PPI, protein-protein interaction.
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Figure 6. Interpretation of AD subtypes along with longitudinal changes in the brain. a) Timeline of the longitudinal study (baseline and 2nd year follow-
up) of 108 participants. Delta represents differences between the second and first measurement values. b) Comparison of longitudinal changes of glucose
metabolism (FDG-PET) between the subtypes. #p < 0.1, ##p < 0.05, two-sided independent t-test (for M-TPAD) or Mann-Whitney test (for M-IPAD); &p
< 0.1, &&p < 0.05, ANOVA with Tukey’s post-hoc test. c) Comparison of longitudinal changes of Hva between the subtypes. #p < 0.1, ##p < 0.05, two-
sided independent t-test (for M-TPAD) or Mann-Whitney test (for M-IPAD); &p < 0.1, &&p < 0.05, ANOVA with Tukey’s post-hoc test. d) Comparison of
the 2nd year MMSE z-scores between the subtypes. #p < 0.1, ##p < 0.05, two-sided independent t-test (for M-TPAD) or Mann-Whitney test (for M-IPAD);
&p < 0.1, &&p < 0.05, ANOVA with Tukey’s post-hoc test. e) Key-drivers having similar (sKeys) patterns with delta FDG-PET or Hva (forward or reverse
tendency from cluster 1 to cluster 3). Arrows indicate increase or decrease tendency from cluster 1 to cluster 3. f) Associations between sKeys from both
M-TPAD and M-IPAD models. Autophagy-related pathways were mainly involved in the pathway map. g) Hypothetical AD progression plot. Conjectured
participant distribution range are marked as yellow. Abbreviations: Clu, cluster; MMSE z-score, mini-mental state examination with the correction for
age, sex, and education level.
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Figure 7. The impact of autophagy on AD. a) A graphical summary of experimental settings for the validation cohort (n = 120 for PBMC, n = 10 for
iPSC-derived brain organoids, CRISPR-Cas9- based ApoE isogenic lines). For pseudo aging effect (mimicking longitudinal analysis similar to Figure 6),
iPSC-derived brain organoids were treated with a telomerase inhibitor (MST-312). b) Autophagy-related molecules were significantly altered in PBMCs
from the patients with cerebral amyloid pathology. A total of 120 samples from 10 cohorts (each cohort comprised 12 samples) were quantified for the
validation of autophagy-related molecules in PBMC samples. *p < 0.05, **p < 0.01, and ***p < 0.001 by one way ANOVA with Tukey post-hoc test. #p
< 0.05 and ##p < 0.01 by unpaired t-test (n = 30, CN without brain amyloid pathology, CN−; n = 30 CN with brain amyloid pathology, CN+; n = 30 MCI
with brain amyloid pathology, MCI+; n = 30 dementia patients with brain amyloid pathology, DEM+). c) Pseudo-aging effect (MST-312) induces changes
in the expression of autophagy-related gene. Ten iPSC-derived brain organoids were used for the RNA sequencing analysis (n = 5, CN−; n = 2, MCI+;
n = 3, DEM+; total n = 10). *p < 0.05, **p < 0.01, calculated using limma in R. d) Autophagy-related molecules were significantly altered in the ApoE
ɛ4/ɛ4 isogenic brain organoids compared to ɛ3/ɛ3 parental brain organoids (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 by independent
t-test). e) High-resolution images by confocal microscopy using iPSC-derived brain organoids and brain assembloid (organoid + microglia). For upper
images, GFAP (astrocyte, green); LC3B (autophagy marker, red), MAP2 (neuron, pink), and DAPI (nucleus, blue) were used. For lower images, TREM2
(microglia, pink) and LC3B (autophagy marker, blue) were used. Scale bar = 20μm. White boxes indicate 3D rendering position for Figure 7f. n = 4
organoid or brain assembloid tissues were used for imaging. f) IMARIS 3D rendering and LC3B quantification. In sum, n = 3250 ɛ3/ɛ3 neurons, n =
2391 ɛ4/ɛ4 neurons, n = 538 ɛ3/ɛ3 astrocytes, n = 148 ɛ4/ɛ4 astrocytes, n = 32 ɛ3/ɛ3 microglia, n = 76 ɛ4/ɛ4 microglia were quantified individually. **p
< 0.01 and ****p < 0.0001 by independent t-test.
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Interestingly, autophagy-related molecules (Atg7, Atg12/5, p-
ULK/ULK, and Atg9) in the PBMCs were significantly down-
regulated with the progression of AD (Figure 7b). Moreover,
PI3K/Akt signaling pathway (p-PI3K/PI3K or p-Akt/Akt) was en-
hanced compared to CN− whereas the levels of p-mTOR/mTOR
were not changed (Figure 7b). This phenomenon implies that
PI3K/Akt regulates peripheral autophagy-related molecules us-
ing the mTOR-independent pathways; this is consistent with the
inhibitory arrow “e” in Figure 6f. Therefore, the changes in pe-
ripheral autophagic pathways in the PBMCs may induce vari-
ous phenotypes in the patients with cerebral amyloid pathology,
compared to those in normal subjects without cerebral amyloid
pathology. Subsequently, for the validation of central autophagic
changes in AD, our previous RNA sequencing data with human
iPSC-derived brain organoids were re-analyzed.[3f]

As the organoids were treated with the telomerase inhibitor
MST-312 for pseudo-aging effect (aging process), we consid-
ered this analytical setting to correspond to our longitudinal
analysis in Figure 6. Similar to the periphery, the expressions
of autophagy-related genes (ATG3, ATG5) and anti-sense genes
(ATG10-AS1) were significantly altered in the PiB+ cohort with
MST-312 treatment, but not in the PiB+ cohort without MST-
312 treatment, compared to those in the CN− cohort (Figure 7c).
However, in contrast with the peripheral autophagic system,
MAP1LC3B (a coding gene for autophagy-related protein LC3B)
was also decreased in the PiB+ cohort with MST-312 treatment,
but not in the PiB+ cohort without MST-312 treatment, com-
pared to that in the CN− cohort (Figure 7c). Moreover, the anti-
sense MTOR gene (MTOR-AS1) had less effect on the MST-
312-treated organoids than on the non-treated organoids (Fig-
ure 7c). This indicates that central autophagy systems are medi-
ated by mTOR-dependent autophagy pathways whereas periph-
eral systems are not. Furthermore, our other key-drivers from
Figure 6, such as AGER, ITPR3, and PTGS1, also exhibited signif-
icant differences between CN− and PiB+ in the MST-312-treated
organoids compared to those in the non-treated organoids (Fig-
ure 7c). In summary, Figure 7a–7c clearly shows that although
we cannot argue that autophagy is the only factor determining
clustering because our results were derived from unsupervised
machine learning with a variety of datasets, the complex link
between the progression of AD and peripheral and central au-
tophagic regulatory systems may contribute to untypical subtypes
among the patients with cerebral amyloid pathology, which could
be a key-driver for our multi-omics models.

Next, we performed western blotting using ApoE ɛ3/ɛ3 and
ɛ4/ɛ4 iPSC-derived organoids (Figure 7d). In contrast with the
results from PBMCs (Figure 7b and Figure S10a, Supporting
Information), we observed that the most popular sporadic AD
risk gene, ApoE, also can modulate mTOR-dependent autophagic
pathways and LC3B molecules, but cannot regulate PI3k-Akt
pathways (Figure 7d). Moreover, the confocal microscopy images
and 3D rendering results by IMARIS software revealed that iPSC-
derived neurons and microglia from e4/e4 show a deficit of LC3B
in our iPSC-derived 3D brain assembloid system (Figure 7e,f, Fig-
ure S10b, Supporting Information). This phenomenon implies
that AD clusters can also be affected by ApoE genotypes, but si-
multaneously let us know that is not the only one reason for our
clustering results, because our clusters from M-TPAD and M-
IPAD do not show differences in ApoE genotypes between the

clusters (Tables S5 and S6, Supporting Information) and seem
to be affected by PI3K-Akt pathways (mTOR independent; see
“e” pathway in Figure 6f and Figure 7b) rather than mTOR-
dependent autophagic pathways. Of course, it is difficult to argue
that mTOR pathways or ApoE genotypes are not associated with
our clusters, because i) PI3k-Akt-mTOR pathway was one of the
enriched pathways in our clustering results and ii) lipid metabolic
pathways are major key-driver pathways from our M-IPAD model
(Figure 6e). In summary, we can conclude that the outcome of
clustering in AD have been influenced by multiple autophagy-
related pathways both in the periphery and central nerve systems
and speculate that mTOR and PI3k-Akt pathways are differently
regulated in accordance with their biological locations.

2.9. Validation of Clustering Results

Finally, we performed clustering and transcriptome analysis us-
ing a public human brain transcriptome dataset from the Gene
Expression Omnibus (GEO) database (GSE109887) (Figure 8a).
As expected, we observed clear dichotomized clusters in the pa-
tients with AD, but not in the CN subjects (Figure 8a). Interest-
ingly, the top-ranked significant DEGs in AD (AD cluster 1 vs
AD cluster 2), such as MEX3A (autophagic vesicle protein), ND-
FIP2 (an endosomal protein with a role in vesicular trafficking
or ubiquitin ligase activator), DIRAS2 (autophagy-mediated cell-
death by inhibition of Akt-mTOR), SYT1 (synaptic vesicle traffick-
ing), and SATB2 (hypoxia-induced autophagy) were autophagy-
related genes but those in the CN subjects (CN cluster 1 vs CN
cluster 2) were not (Figure 8b).[16] Moreover, numerous top-rated
targets from our multi-omics models (M-TPAD, M-IPAD) and
autophagy-related molecules were also significantly different be-
tween Cluster 1 versus Cluster 2 in AD compared to Cluster 1 ver-
sus Cluster 2 in CN (Figure 8c). Therefore, our overall analyti-
cal platform from unsupervised learning by MOFA+ to the val-
idation of key-drivers using the systems biological approaches,
PBMCs, iPSC-derived brain organoids, and human brain tran-
scriptome can inform the mechanism of finding the rationales
of clustering results from their unsupervised models as well as
their novel potential subtypes.

2.10. MOFA+ Analysis Application to an Independent Cohort

Since the cohort for M-IPAD and M-TPAD models only included
PiB+ participants, it was also necessary to confirm the discrim-
inatory potential of the MOFA+ tool to identify CN+ and AD
cases (regardless of their brain amyloid status, but according
to the cognitive status). Therefore, we additionally performed
MOFA+ analysis in an independent Chinese AD cohort (Fig-
ure S11, Table S2, Supporting Information), which comprised
whole genome sequencing, proteomics, and blood biomarkers
from 180 participants (n = 106 patients with AD, n = 74 CN+)
(Figure S11a,b, Supporting Information). ROC curve analysis us-
ing Factor 2 showed a high AUC value (0.86) although it is an un-
supervised multi-omics method (Figure S11c, Supporting Infor-
mation). Moreover, MOFA+ showed clear clusters and distinct
proportion of CN+/AD ratio (Figure S11d–f, Supporting Infor-
mation, left). Furthermore, one of the key biomarkers for AD,

Adv. Sci. 2022, 2201212 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2201212 (12 of 17)



www.advancedsciencenews.com www.advancedscience.com

Figure 8. Clustering validation among the patients with AD. a–c) Clustering validation using a public transcriptome database with the post-mortem
brains (total n = 78; 46 AD and 32 CN). Volcano plot presents the significant DEGs between each cluster (AD cluster 1 vs cluster 2 or CN cluster 1 vs
cluster 2) with the adjusted p-values (Padj < 0.05). The arrow in the volcano plots indicates autophagy-related genes. Bar graphs show the significance
of the overlapped top-rated targets from our multi-omics models and autophagy-related molecules (cut-off, -log10(Padj) > 1).

plasma neurofilament light chain, showed significant differences
between the clusters both in all participants and AD patients only
(Figure S11f,g, Supporting Information). Therefore, these find-
ings confirm that MOFA+ can also be useful to discriminate AD
from CN+ in an independent cohort, as well as to find potential
clusters within the disease group.

3. Discussion

Current medications for AD are limited to acetylcholinesterase
inhibitors or N-methyl D-aspartate antagonists. Although they al-
leviate clinical symptoms by decreasing cholinesterase activity or
regulating glutamate in the brain, researchers do not yet fully un-
derstand how they work to treat AD. Moreover, since these drugs
do not directly target the pathological molecules represented by
A𝛽 peptides or aggregated tau, they cannot solve the fundamen-
tal problems that are relevant to unravel the main cause of the
disease. Therefore, recent trials have focused on new drugs tar-
geting specific molecules in the brain, such as aducanumab,
solanezumab, and tau aggregation inhibitor, which have repre-
sented significant advances. However, it is still subject to de-
bate whether it can be effective to every patient because AD is
a multi-factorial disease with various biological risk factors. Sev-
eral researchers have suggested that the heterogeneity of AD ex-
ists; therefore, finding AD subtypes and developing personalized
medications through integrated analytic approaches overseeing
diverse pathways has become a need. Hence, we believe that our

data, which reveals possible molecular drivers of AD heterogene-
ity or subtypes by using multiple datasets, is without doubt an
extraordinarily important step for AD knowledge.

Fortunately, recent technological multi-omics advances have
paved the way for analytical methods that can integrate heteroge-
neous data sources.[9] Herein, MOFA+, a computational method
for unsupervised integration decomposing the sources of hetero-
geneity of data, enabled us to merge our multiple datatypes com-
prising several missing data and reveal novel putative molecular
drivers of each possible AD subtype.[11b] Although our miRNA
or proteomics datasets had missing values, MOFA+ successfully
performed the multi-omics trainings with the reconstruction of
the MOFs and revealed distinct clustering patterns in the M-
TPAD and M-IPAD models (Figures 1 and 2). Using MOFA+, we
obtained noteworthy results. First, the immune-focused M-IPAD
model showed a higher clustering score (silhouette score, 0.64)
than the M-TPAD model (silhouette score, 0.41), which means
that immunological changes may be involved in AD heterogene-
ity (Figure 2). Second, our clusters do not just rely on well-known
AD-related factors, such as brain A𝛽 or cognitive scores (see Fig-
ures S4 and S5, Supporting Information). Third, various AD-
associated molecules such as bridging integrator 1 (BIN1), ATP
binding cassette subfamily A member 7 (ABCA7), lipoprotein li-
pase (LPL), complement receptor 1 (CR1), vascular cell adhesion
protein 1 (VCAM1), C-reactive protein (CRP), galectin-3 binding
protein (LGALS3BP), galectin-3, high-density lipoprotein (HDL)
cholesterol, and phosphoinositide 3-kinase (PI3K) were selected
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as top-rated targets for contributing to the clusters (Figures 3
and 4). However, we thought that further systems-biological ap-
proaches for the M-TPAD and M-IPAD models were still needed
for additional biological interpretation of the generated clusters.

For the biological interpretation, we set two main purposes: to
find the relevant pathways involved in the identified clusters and
to find a way to reveal the characteristics of each cluster (Figure 5).
For the first goal, enriched pathway analysis was performed to
reveal the key pathways of each cluster. Interestingly, several
immune-related pathways (immune systems, complement path-
ways, lipid metabolic process, complement activation, among
others) were selected in the M-IPAD model. Since dysregula-
tion of lipid-related pathways and altered cholesterol-metabolism
have fundamental roles in the progression of AD[3c,17] and are
highly associated with neuroinflammation in AD,[18] we sug-
gest our M-IPAD model operated properly to understand biologi-
cal implications consisting in the clustering results. Noteworthy,
many pathways were also associated with autophagy pathways
(e.g., autophagosome assembly, mTOR pathway, and PI3K-Akt
pathway) and AD-related pathways (e.g., AGE-RAGE pathway,
histone deacetylation, and cholinergic synapse) both in the M-
TPAD and M-IPAD models. Furthermore, each cluster showed
distinct differences although they were all comprised PiB+ par-
ticipants without any differences in their cognitive functions, age,
sex, ApoE type, and their brain status (see Figures S4 and S5,
Supporting Information). Thus, through our enriched pathway
analysis, each cluster was able to be distinguished because of
their differently enriched pathways. Next, for the second goal,
multiple clustering analysis (MCA), and key driver analysis were
performed, revealing the key driver nodes within the network
model,[14] Interestingly, the key-driver node analysis along with
our longitudinal analysis proposed that autophagy is the main
cause of the association between longitudinal changes of the
brain and our clustering (Figure 6, see Table S9, Supporting In-
formation). Even if two years is not a long time for a longitudinal
study, we confirmed that there have been many changes in the
condition of participants for 2 years (cognitive decline was ob-
served in 63.5% of patients, PiB increase was observed in 77.9%
of patients, FDG decrease was observed in 89.8% of patients,
Hva decrease in 73.8% of patients, and clinical dementia rat-
ing changes in 26.8% of patients). We believe that this clinical
or pathological deterioration for two years made us interpret the
association between the clustering information and the condi-
tion of participants. Also, since i) autophagy-related pathways are
highly associated with Hva changes, glucose metabolism, and
broad ranges of neurodegeneration, ii) autophagy is one of the
major links between the periphery and the brain, iii) both pe-
ripheral and central autophagic regulatory systems are highly
interlinked with the progression of AD (Figure 7), and iv) clus-
ters within the AD patients are also clearly shown in another co-
hort (Figure 8), we suggested that our interpretation provides rea-
sonable evidence for the appropriate MOFA+ clustering. Hence,
we concluded that characterization of the subtypes within AD
patients was completed by convergence of multi-omics analy-
sis, systems-biological approaches, and biological validation with
PBMCs, iPSC-derived organoids, and human post-mortem brain
samples. Although several studies have recently examined the
multi-modality of AD pathology, our analytical platform has obvi-
ous differentiation strategies because i) all datasets for the multi-

omics analyses were generated autonomously, ii) we adopted
system-biological analyses with HENA AD network, KDA, and
MCA methods to narrow-down the key-drivers, iii) we performed
a longitudinal analysis to understand the informative clusters in-
depth, and iv) we utilized different types of biological samples to
validate our key-drivers such as PBMCs, iPSC-derived cerebral
organoids, microglia, and human post-mortem brain samples.

In summary, this study revealed distinct clusters in patients
with AD, both in the general (M-TPAD) and immunologi-
cal (M-IPAD) models. Although a few studies on multi-omics
data or omics-based subtyping trials exist, our analyses pro-
vide differentiated strategies. Neff et al.[8] only used RNA se-
quencing data from two different public cohorts (ROSMAP and
MSBB), whereas we used four different multi-layers (targeted-
sequencing, miRNA transcriptome, proteomics, blood-based
biomarkers) that were generated autonomously. Furthermore,
Clark et al.[19] utilized MOFA software in R to combine their
multi-modal datasets in AD but were restricted to the MOFA
software, whereas i) we adopted systems-biological analyses with
HENA AD network, KDA, and MCA methods to narrow-down
the key-drivers, ii) performed a longitudinal analysis to elucidate
the informative clusters, and iii) utilized different types of bio-
logical samples to validate our key-drivers such as PBMCs, iPSC-
derived cerebral organoids, and human post-mortem brain sam-
ples. Furthermore, our systems-biological approaches identified
that there are significant associations between the top-rated tar-
gets and the enriched pathways or meanings of each cluster in
both models. Nevertheless, further studies with more focus on
testing candidate drugs (e.g., treatment with drugs to cerebral
organoids or clinical trials) should be performed to develop preci-
sion medicine therapies for AD. Moreover, further validation us-
ing an independent cohort with similar multi-modal datasets is
needed. Despite these limitations, we believe that this study pro-
vides a powerful platform for materializing precision medicine
treatments for AD relying on the convergence of multi-omics
analysis, network modeling by a systems-biological approach,
a longitudinal cohort analysis, and validations using PBMCs,
iPSC-derived cerebral organoids, and human post-mortem brain
samples.

4. Experimental Section
Recruitment of Participants and Brain Imaging: A total of 170 patients

with Pittsburgh compound B-positron emission tomography (PiB-PET)
positive (brain amyloid positive), who participated in the Korean Brain
Aging Study for the Early Diagnosis and Prediction of AD (KBASE), were
included in the study (see Tables S1–S4, Supporting Information). All par-
ticipants underwent comprehensive evaluations and multi-modal brain
imaging, such as PiB-PET, 18F fluorodeoxyglucose (FDG)-PET, and mag-
netic resonance imaging (MRI). All of the methods related to the assess-
ment of the patients and their imaging data were described in the previous
study, in which the characteristics of the recruited participants were further
summarized.[20] Briefly, for surrogate markers of in vivo neuropathologi-
cal changes in AD, standardized uptake value ratio of accumulated PiB
was quantified in the cortical region-of-interests. Moreover, the standard-
ized uptake value ratio of FDG-PET was used to measure cerebral glucose
metabolism in the brain of the participants, which was related to func-
tional deficits in AD.[21] T1 MRI was used for Hva and cortical thickness
(Dickerson) assessments based on previous studies.[22]

Multimodal Generation: Diverse experimental and analytic tools were
used prior to the machine learning processes, using human blood-derived
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biopsied specimens such as PBMC, DNA, plasma, serum, and miRNA
from 170 patients with cerebral amyloid pathology. Detailed methods for
the generation of each dataset (genetics, transcriptomics, proteomics, and
blood-based biomarkers) are presented in Supporting Information.

Unsupervised Integration of Multi-Omics Datasets: For the unsuper-
vised integration of datasets (Please see details in Supporting Informa-
tion), Multi-Omics Factor Analysis V2 (MOFA+ version 1.1; with R version
4.0.0 and R Studio version 1.1.456) was applied, which was developed
for decomposing the sources of heterogeneity in multi-omics datasets,
to high-dimensional multi-omics profiles collected from PiB+ patients-
derived peripheral blood samples.[11] All analyses in MOFA+ were per-
formed in accordance with MOFA+ vignette, which can be freely down-
loaded at https://github.com/bioFAM/MOFA2.

Statistical Analysis for the Downstream Analyses beyond MOFA+: For
clustering, standardized criteria were set and applied to the trained MOFs
(Figure 2). The elbow plot and average silhouette analysis were performed
using ggplot2 R package (version 3.3.3), to determine the optimal number
of clusters and factor-combination.[23] Please see details in Supporting
Information.

Enriched Pathway Analysis, Multiple Clustering Analysis (MCA), and
Key-Driver Analysis (KDA): Targets that showed a significant increase
or decrease rate (threshold > 0.5 or < −0.5, respectively) compared
with the average value of the whole cohort were used as input to
reveal important pathways of each cluster. Six public databases
were used (KEGG_2019_human, GO_molecular_function_2018,
GO_cellular_component_2018, GO_biological_process_2018, Bio-
Carta_2016, Reactome_2016). MCA followed by KDA was performed with
a network model from a heterogeneous network-based dataset for AD
(HENA) and the analysis for multiscale clustering of geometrical network
(MEGENA).[14,24] Please see details in Supporting Information.

Generation of iPSC-Derived Brain Organoids, Microglia, and Brain Assem-
bloids: Cerebral organoids were generated from human PBMC-derived
iPSC lines in accordance with the same method from the previous
paper.[3f] The twelve iPSC lines in that paper were also used for this
project. Briefly, embryoid bodies (EBs) were formed in AggreWell EB for-
mation Medium (Stemcell Technologies; Vancouver, Canada). The EBs
were grown in iPSC-culture medium containing SMAD inhibitors, dorso-
morphin (Merck, NJ, USA), and SB-431542 (TOCRIS, Bristol, UK) and
transferred to 96 well ultra-low-attachment plates (Corning, NY, USA)
on day 6. From day 7, organoids were cultured in neurobasal medium
with a variety of supplements. For experiments, days in vitro (DIV) 70
organoids or DIV100 organoids were used for western blot, immunohis-
tochemistry, and generation of brain assembloids. Next, iPSC-derived mi-
croglia were generated according to the previous paper.[25] In brief, to gen-
erate primitive hematopoietic progenitor cells (HPCs), small aggregates of
iPSCs were cultured in HPC medium (Stemcell technologies) for 12 days.
The round-shaped non-adherent HPCs were transferred into new iPSC-
microglia medium containing 100 ng mL−1 IL-34, 50 ng mL−1 TGF𝛽1,
and 25 ng mL−1 M-CSF (PeproTech, Seoul, Korea) to induce differentia-
tion of microglia for 25 days. On DIV 25, cells were resuspended in iPSC-
microglia medium and further supplemented with 100 ng mL−1 CD200
(Novoprotein, CA, USA) and 100 ng mL−1 CX3CL1 (PeproTech). On DIV
31, cells were used for the generation of brain assembloids. For the gen-
eration of brain assembloids, DIV 100 organoids and DIV 31 microglia
(2×105 cells) were incubated together in neurobasal medium with five cy-
tokine cocktails (IL-34, TGF𝛽1, M-CSF, CD200, and CX3CL1) for 7 days.
The generated brain assembloids were used for immunohistochemistry
and analyzed with IMARIS software (Bitplane, Zurich, Switzerland).

Western Blotting and RNA Sequencing using Human PBMCs, iPSC-
Derived Brain Organoids, and Human Post-Mortem Brain Samples: For val-
idation I (Figure 7), the western blot analysis was performed to quantify
autophagy-related molecules, according to the previous study.[26] PBMC
or brain organoid samples were briefly lysed with RIPA buffer containing
protease inhibitor cocktail. Total proteins were extracted and quantified by
BCA assay. Equal quantities of the cell lysate (protein concentration) were
loaded on each well of 4–12% Nupage gels (Thermo Fisher Scientific, MA,
USA) and separated. The gels were transferred to a polyvinylidene diflu-
oride (PVDF) membrane, which was blocked with a blocking solution for

1 h. Subsequently, the membrane was washed for 30 min and incubated
with primary antibodies overnight at 4 °C. The following day, the mem-
brane was washed again and incubated with secondary antibodies for 1 h.
The protein bands were visualized with a bio-imaging analyzer (AI600, GE
Healthcare, IL, USA) and quantified with a Multi-Gauge Software (Fujifilm
Corporation, Tokyo, Japan). Full blots are shown in Figures S12 and S13,
Supporting Information. For the gene expression of autophagy-related
molecules in the iPSC-derived brain organoids, the previous RNA sequenc-
ing data with a telomerase inhibitor (MST-312; Sigma-Aldrich, MO, USA)
were re-analyzed. The sequencing data were already available at NCBI un-
der SRA accession number PRJNA678865. For the detailed methods of the
RNA sequencing, please refer to the previously published paper.[3f] For
validation II (Figure 8), a public transcriptome database was utilized with
the human post-mortem brains (n = 78) from the NCBI GEO database
(GSE109887). Clustering analysis was performed using pheatmap and gg-
plot2 packages in the R software. DEGs between the clusters were analyzed
using GEO2R (https://www.ncbi.nih.gov/geo/geo2r).

Ethical Approval: Please see details of the methods for recruitment
of participants and brain imaging in Supporting Information. The Insti-
tutional Review Board of the Seoul National University Hospital (South
Korea) approved this study (E-2009-120-1159). Participants or their legal
guardians provided written informed consent.

Statistical Analysis: All input data were pre-processed and quality-
controlled according to the detailed steps described in Figures S1 and
S2, Supporting Information. Outlier values were excluded by ROUT (Q
= 1%) method and clustering analysis. All input values were transformed
within the range from 0 to 1 (Min-Max normalization method). Data were
presented as mean ± SEM, and p-values were calculated by independent t-
test, ANOVA post-hoc test, and chi-square test. Sample size for each statis-
tical analysis was presented in appropriate Figure legends and described
in detail in the results section. All statistical analyses beyond R software
were conducted by Medcalc software (ver. 20.009; Ostend, Belgium) and
Graphpad Prism 8 (San Diego, CA, USA).
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